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The turbulent separated-flow region occurring at a compression corner under 
certain circumstances a t  supersonic speeds has been examined in the light of 
recent improvements to base pressure theory (McDonald 1964). This base pres- 
sure theory is further extended from what could be termed a single-layer model of 
the re-attaching boundary layer to a two-layer model, thus enabling the inviscid 
shock configuration which occurs at the corner to be determined. Application 
of this analysis to some experimental results indicates a substantial measure of 
agreement. 

While this analysis has been framed for estimating the scale of the corner inter- 
action, the extension can of course be applied to increase the range of initial 
boundary-layer thicknesses to which McDonald’s analysis is applicable. An 
example of such an application is shown to be in good agreement with experiment. 

1. Introduction 
A sketch of the interaction region occurring at a supersonic compression corner 

when the wall-turning angle f i m  is sufficiently large is shown in figure 1, together 
with a representative pressure distribution. In  general terms the flow field can 
be considered as arising because the corner demands much too rapid a pressure 
rise. In  inviscid flow a single shock would stand a t  the corner and turn the flow 
parallel to the downstream wall. In  practice this shock wave intersects the 
boundary layer and the pressure rise is diffused upstream through the subsonic 
part of the boundary layer, causing it to thicken in advance of the corner. This 
thickening results in the supersonic part of the boundary layer being deflected 
outwards, which in turn causes compression waves to be generated in the boundary 
layer and propagated into the free stream. Evidently the upstream pressure 
distribution must be obtained by the growth of the boundary-layer displacement 
thickness, which, in fact, is governed by the very pressure distribution it is 
creating. This type of distribution has been termed self-induced and has been 
the subject of several studies (Honda 1958). Eventually a stage is reached where 
this self-induced pressure gradient becomes so large that the fluid at  the surface 
cannot overcome it and so separates from the surface leaving a ‘dead air’ 
pocket underneath. 

This separated layer of fluid entrains fluid from the dead-air region by the 
action of the shear stresses until it  approaches the downstream wall. At this 
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point mass conservation requires all the entrained fluid to be reversed into the 
cavity. Evidently, the greater the length over which this entrainment takes place 
the higher the velocity on the streamline which must stagnate and so close the 
cavity (commonly called the dividing streamline). It also follows from this that, 
the greater the length from the separation point, the higher is the general level 
of velocity above this dividing streamline. Since the ability of a shear layer to 
re-attach and sustain t,he remainder of the pressure rise must be directly related 
to the general velocity level above the dividing streamline, it follows that to 
meet the demands for a larger turning angle the separation point moves upstream. 

Reattachment Initial --- 
boundary point 4 
layer 

Separation 'Dividing streamline 
point 2 

Static pressure 

Recently an attempt was made (Sanders & Crabtree 1963) to put the foregoing 
on a quantitative basis using the model of separated flow first introduced in- 
dependently by Chapman, Kuehn & Larson (1959) and Korst, Chow & Zumwalt 
(1959). This attempt had little success due to the fact that, as pointed out by the 
authors, for simplicity a velocity profile was adopted which could not give the 
required variation of the velocity ratio on the dividing streamline. Cooke 
(1963), however, removed this objection by introducing the effect of the initial 
boundary layer on the shear-layer velocity profile and a t  the same time sub- 
stituted a modified recompression criterion for the one proposed by Chapman 
and Korst. This previously adopted criterion was simply that the total pressure 
of the dividing streamline was equal to the static pressure at infinity. Cooke 
pointed out that in fact the total pressure of the stagnating streamline appeared 
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to be considerably less than this, and suggested that re-attachment occurred 
half-way up the pressure rise. Nash (1 962 b)  was led to a similar conclusion but in 
some later unpublished work suggested that the re-attachment pressure rise 
varied quite substantially with both Mach number and Reynolds number. White 
(1963) has also utilized this modified recompression criterion in a very similar 
manner to Cooke (1963). In  order to circumvent the problem of estimating this 
pressure rise to re-attachment coefficient N ,  McDonald (1964) placed the recom- 
pression criterion on a boundary-layer footing. In  this note it was suggested that 
the pressure rise which occurs in practice is such that the velocity profile emerging 
from the recompression region is of the flat-plate type. Following from this an 
approximate method of calculating the final boundary-layer thickness para- 
meters was advanced. Using this a limited analysis of some experimental 
results showed that the calculated profile shape parameter, that is the ratio 
of boundary-layer displacement to momentum thickness at the end of the pres- 
sure rise, was quite close to the estimated flat-plate value. 

In  the present note the analysis of McDonald (1964) is extended to take 
account of the finite length over which this re-attachment takes place. In  view 
of the much more gradual pressure rise to re-attach the shear layer in the present 
circumstances, a two-layer model of the recompression process is substituted for 
the previously adopted one-layer model. 

2. Method of solution 
Study of the pressure distribution in figure 1 reveals the various regions into 

which the flow may be divided. In  region 1 a uniform stream of external Mach 
number il& and static pressure pl approaches the corner. In  region 2 this flow 
experiences a pressure rise until the boundary layer separates from the wall 
at  a point where the external stream conditions are iKe2 andp2. From this point 
the pressure gradient decreases in region 3 to a plateau condition specified by 
Me3 and p3.  The flow in region 4 is considered to be at a constant pressure equal 
to this plateau value until the effect of the approaching wall is felt in region 5. 
This pressure rise characterises the recompression region where the fluid en- 
trained in region 4 is reversed back to the cavity. The end of this region is marked 
by the re-attachment point where the static pressure is p ,  and the free stream 
Mach number Me4. In  region 6 this newly attached boundary layer is subjected to 
a further pressure rise until it  reaches p5 and Me5, the overall value required by 
the corner. 

These individual regions will now be dealt with in turn, the object being to  
trace the boundary-layer development from region 1 to region 6 and so specify 
the separation point by an iterative process based on the condition of the bound- 
ary layer emerging from region 6. A momentum-integral approach is adopted 
and a separation point is first of all assumed. The subsequent boundary-layer 
development in terms of the momentum thickness and shape parameter is then 
calculated. Depending on whether the calculated final shape parameter is 
greater than or less than the appropriate flat-plate value, the separation point is 
moved downstream or upstream. 
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At the start of each of the sections dealing with the analysis a brief outline of 
the subsequent treatment is given. Readers only interested in obtaining a general 
impression of the approach used can therefore omit the detailed analysis. 

0 0 -  1 0.2 0.3 0.1 0.5 0.6 - 
C,* = 1 - (M,/iW,)2 

FIGURE 2.  The boundary-layer momentum thickness at separation. - , Predictions 
of Stratford (1959) : - - 0 - -, predictions of Reshotko & Tucker (1955). 

3. The boundary layer up to separation 
In this section some of the currently available methods of predicting the 

boundary-layer momentum thickness at separation and the pressure rise to 
separation are briefly introduced. It is pointed out that the two simplest methods 
of predicting the momentum thickness at separation give very similar results. 
The problem of determining the shape parameter is avoided by assuming the 
velocity profile at separation to be similar to the asymptotic, free, half-jet 
profile. 

Analysis 

The problem of predicting the boundary-layer development under the influence 
of these largely self-induced pressure gradients has been of considerable interest 
to a number of investigators. Honda (1958) provides a method of solution which 
would give the boundary-layer and pressure distribution up to the separation 
point for a given starting point. In  view of the difficulty, however, of obtaining 
the detail pressure distribution from the separation point to the plateau pressure 
(and from the plateau up to the re-attachment point) it has been decided to 
concentrate on predicting the overall scale of the interaction only, leaving the 
detail pressure distribution as a subject for future investigators. Having thus 
restricted the analysis the problem is therefore reduced to one of predicting the 
condition of the boundary layer at  separation and the pressure rise to this point. 
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A particularly useful analysis of a separating incompressible turbulent bound- 
ary layer has been given by Stratford (1959). In  this analysis Stratford gives a 
comparison between the theoretical and experimental variation of momentum 
thickness at separation with the pressure coefficient at this point. The momentum 
thickness at separation was non-dimensionalized by division by the momentum 
thickness of a comparison boundary layer. This comparison boundary layer was 
assumed to grow over the same horizontal distance but without the influence 
of the adverse pressure gradient. Good agreement between the theoretical 
predictions and the experimental measurements was obtained. 

In order to  utilize the foregoing incompressible solution the compressibility 
transformation of Mager ( 1959) is introduced. Basically this transformation 
specifies a co-ordinate transformation such that the compressible equations of 
motion are reduced to their incompressible equivalents. 

However, this transformation has been the subject of some criticism recently, 
mainly on the question of the correct method of transforming the horizontal 
length scale. While this criticism is quite justified, in the present case the hori- 
zontal length is only of minor importance and so it is felt that this transformation 
will yield reasonable results. Thus, using the transformation, solutions valid in 
incompressible flow can be carried over to compressible flow. Under the trans- 
formation the following relationships are obtained 

where 6 is the boundary-layer momentum thickness and && is the local Mach 
number a t  the edge of the boundary layer. Cp3 is the incompressible pressure 
coefficient at  separation and Me2/M,, is the ratio of the free-stream Mach number 
at  separation to the initial free-stream Mach number. The bar and asterisk 
denote the incompressible quantity. On the assumption that the interaction 
length is short, the momentum thickness of Stratford’s comparison boundary 
layer may be considered to be the same as the momentum thickness at  the start 
of the interaction, that is 6,. With this assumption and using (1) and (2), Strat- 
ford’s relationship for the change in momentum thickness at an abrupt pressure 
rise is plotted in figure 2. 

A somewhat different approach to this same problem has been developed by 
Reshotko & Tucker (1955) and uses the momentum and moment-of-momentum 
equations. This approach is discussed in Appendix 2 and only the results are 
mentioned here. First, the change in transformed shape parameter is given by 

where 

and secondly the change in momentum thickness is given by 
- 

= s ( m / g ( m ,  
where 

(H2- l )%((H+ 1) 
H4 g(H)  = 
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Using (3)-(6) a plot of @/8: against Cps was obtained and is denoted by the 
circled points on figure 2. It can be seen that quite good agreement is obtained 
between this approach and the solution of Stratford, which, it should be re- 
membered, compares very well with experiments at  low speeds. 

In  a similar fashion to the plot of @/8: vs Op, Stratford gives a relationship 
betweenHz and Cps. Later in the present analysis it becomes possible to simplify 
the evaluation of the free shear-layer profile (the velocity profile in region 4) 
if the velocity profile of the boundary layer a t  separation closely resembles the 
velocity profile of an asymptotic shear layer. Failing this, the simplification 
holds good if the initial boundary layer is small in comparison with the free shear- 
layer development length (see Nash 1962a). While in the present case this 
second reason might not be valid, it  is a well-known fact that the velocity 
profile of a separation boundary layer closely resembles the asymptotic shear- 
layer profile when the pressure rise to separation is quite large. Adoption of this 
approximation makes any further investigation of the transformed shape 
parameter a t  separation unnecessary and in order to complete this aspect of the 
solution only the pressure rise to separation remains to be determined. 

Several empirical, semi-empirical and theoretical methods are available to 
predict the pressure rise to separation, e.g. Chapman et al. (1959), Mager (1959), 
Reshotko & Tucker (1955). A very convenient theoretical relationship in good 
agreement with the experimental evidence is given by Ray (1962) as 

(provided that separation does in fact occur ; should separation not occur, in 
certain circumstances very much larger pressure rises than this can be sustained). 
In  (7) ,  C,, is the Chapman constant relating the viscosity to temperature, 

and for the present purposes a value of C, of around 0.9 is suggested. 
Thus using equation (7) the pressure rise to separation is obtained. Using 

either oblique shock or isentropic relationships (little difference arises from using 
either form) this pressure rise is converted to a Mach number change. This Mach 
number change may then be used to read off a value of 8,*/@ directly from figure 2 
or to evaluate a value from equations (3)-(6). This completes the information 
required a t  the separation point. 

4. The pressure rise from separation to the plateau 
Mager (1956) postulates that the pressure rise after separation is the result of 

the transverse pressure gradients and on this basis goes on to derive a simple 
relationship between the plateau pressure p 3  and the separation pressure p z  
given as 

where p3 is the free-stream flow deflexion angle in the plateau region 4. It turns 
out that equation (9) is in good agreement with experiment but, as P3 is not in 
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fact known a priori, the method involves an iteration with p2, the free-stream 
flow deflexion angle at  separation as the first approximation to p3. 

The next problem is to calculate the momentum thickness at  the end of region 3. 
Unfortunately this is very difficult to achieve at the present time. In  view, 
however, of the small magnitude of the pressure rise from separation to the 
plateau value (typically of the order of 5-10 yo p2) it is proposed to ignore the 
effect of this further pressure rise on the momentum thickness a t  separation and 
write 

This completes the development up to the start of region 4, the constant 
pressure plateau region. 

5. The plateau region 
In  this region three problems are faced. The first is the prediction of the shear- 

layer velocity profile at  any station downstream of the separation point. The 
second is the fixing of this velocity profile in space7 and the third is concerned 
with relating the shear-layer velocity profile to the scale of the interaction. 

The first problem is solved by adopting the approximate method of Kirk 
(1959), who suggested that this profile could be represented by a displaced asymp- 
totic profile, that is, a profile obtained with zero initial boundary layer at some 
false upstream origin. The second problem, that of locating the velocity profile 
in space, is solved by following the procedure outlined by Korst et al. (1959). 
Thus the shear-layer profile and its location in space at any specified length from 
the separation point is determined. In  particular the dividing streamline, which 
in turn specifies condition of the boundary layer at re-attachment, can now be 
found if the appropriate length scales are known. It is argued by McDonald 
(1964) and later in the present note that the appropriate length scales are I ,  and 
1 (see figure 1) and an approximate method of calculating these length scales is 
advanced. 

(a )  The velocity projile 

The problem of determining the shear-layer velocity profile is detailed fully by 
McDonald (1964) so only the main results are quoted here. It should be pointed 
out that using this approach the solution is restricted to zero heat transfer and 
a unit Prandtl number fluid. The velocity profile is given by 

u*/u,* = q5 = +(l +erfy*), (11) 

In  accordance with Kirk's approximation and using a value of the mixing co- 
efficient g* = 12, it follows that 

S* = 308;) (13) 

and the compressibility transformation is defined by 
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where $ is the stream function, ps is the stagnation density, that is, the density 
a t  the inner edge of the shear layer, and the asterisk denotes the transformed 
or incompressible quantity. It should perhaps be pointed out that the reason for 
using a transformation for the free shear layer other than the Mager transforma- 
tion used earlier is that, in view of the fairly detailed experimental measurements 
available in this case, it  has been found possible to obtain more accurate values 
(valid only for the free shear layer) for some of the free constants occurring in 
the transformation. Under the transformation the momentum thickness 8 is 
transformed, 

The integral If is defined as 
6" = ( P e / P s ) @ .  

and is plotted as a function of y* in figure 5 of McDonald (1964) using a value of 
7: corresponding to + = 0.999. From these definitions and continuity it can be 
shown that the ordinate of the dividing streamline y$ is obtained from 

This equation (17) can therefore be used to evalute @ when the length x is 
known. From equation (11) 72 can be used to give g5d, the velocity ratio on the 
dividing streamline. It remains to specify x and to do this the geometry of the 
problem must be introduced. It follows that the ordinates of certain streamlines 
which are known in the transformed plane will be required in the real plane. To 
do this use is made of the inverse transformation to equation (14), that is 

Noting that, for constant pressure, unit Prandtl number, and zero heat transfer 

PAP = (1-c2+", (19) 

where c is the Crocco number defined by 

c2 = +(y - I) M,23/[ 1 + =& - 1) -Mi3], 
the result obtained is 

It should be noted that the origin for the integration should be taken on the 
dividing streamline to be strictly in accordance with the transformation. In  
the region below + = 0.5, however, and with c small, the contribution of the 
c2qP term is very small. Furthermore, the real ordinate is not required to a high 
degree of accuracy so, in the inner region of the shear layer, it  would appear 
sufficiently accurate to write 

Thus, a complete description of the shear-layer profile may be obtained provided 
the length of the plateau region x is known. The problem of determining this 

y = y". (22) 
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length x (subsequently termed Z3) is studied in the following section. First of all 
the free shear layer is located with respect to the wall in (b).  This is followed in 
(c) by a brief consideration of the geometry and an expression is derived for the 
length up to the hypothetical impingement point of any ordinate in the shear 
layer. 

(b)  The  axis shift 

In  solving the partial differential equation of the free shear layer to yield equa- 
tion (ll), use is made of an intrinsic system of co-ordinates. In  the present 
problem i t  is desired to relate this intrinsic system to some reference system of 
co-ordinates so that the geometry of the problem may be properly introduced. The 
relationship between the two co-ordinate systems is obtained by ensuring that 
the momentum equation is satisfied with respect to the reference system (the 
momentum equation is automatically satisfied referred to the intrinsic system). 
The reference system of co-ordinates is defined to represent the boundary of the 
corresponding inviscid jet (see figure 3). This inviscid jet is considered to be the 

path the fluid would take under the influence of identical external forces in the 
absence of the shear stresses. By defining the reference system in this fashion 
it is ensured that the two systems coincide a t  5 = 0. Korst et al. (1959) give this 
origin shift and after some manipulation it can be put in the form 

where yrer is a point sufficiently large such that $ N 1.0, ?jb is the origin shift, and 
A and 0 are the displacement and momentum thicknesses of the boundary layer 
a t  separation. Having already found Kirk's approximate representation of the 
mixing profile very useful i t  is natural to extend it to the present problem of 
determining the axis shift. Setting the initial boundary layer as zero at some 
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hypothetical upstream origin, applying the transformation and introducing the 
similarity parameter for the asymptotic free jet give 

Evaluating (24) using the tabulated error-function profile relationships given 
by Korst, Page & Childs (1955) gives 

yb = (X* /a*)  (0.3989 + 0 - 0 8 2 6 ~ ~ ) ,  

where y6 is the shift between q5 = 0.5 and the reference system passing through the 
virtual origin of the asymptotic shear layer (note that the asymptotic error- 
function ordinate origin is at qi = 0.5). Interpreting this shift as an angular 
deviation, Brer, gives 

Pref = ~ , J ( x  + S) = (0.033 + 0 . 0 0 6 9 ~ ~ )  (1 - c2), (25) 

and (25) gives the angular deviation between the two systems of axes Pref as 
about 2" in incompressible flow and about 1" at M = 2.0. Evidently the axis 
angular deflexion is a very small quantity which, although included in the subse- 
quent analysis, can be safely neglected in most circumstances. 

( c )  Geometrical aspects 

To obtain a solution to the present problem the length of the free shear has to be 
estimated. To do this curvature of the streamlines in the vicinity of the re- 
attachment point is neglected (see figure 5). Ifp is the angle between the ordinate 
of interest 7 and the shear-layer intrinsic axis, and h is the height from the wall 
to the ordinate of interest a t  the separation point then, from the geometry of 
triangle ABC in figure 4, 

where 

and by definition 

where it has been assumed that the inner edge of the shear layer is a t  p* = - 1.0. 
Since the integral in (28) can be evaluated with the help of tabulated values (Korst 
et at. 1955) the problem is now one of determining the ordinate of interest. The 
first length of interest is the length up to the start of the pressure rise, I,, and 
following McDonald (1964) this is assumed to occur when the ordinate at the 
inner edge of the shear layer yi meets the fluid being reversed from the re-attach- 
ment region (see figure 5). Assuming that yi = y% this results in 

p = -2*0/a*(l+*(y- 1)J!q3) (29) 

and h = 0, so equation (26) can be solved for la. The problem of determining the 
ordinate of the dividing streamline so that the length 1 can be found is treated 
in $6. 
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FIGURE 4. Sketch showing the flow geometry. 

6. The velocity profile at re-attachment 
In  this section a two-layer model of re-attachment is suggested, after the man- 

ner of Stratford (1959). Here re-attachment is considered to be fairly abrupt, 
so that along streamlines of the mean flow in the outer part of the boundary 
layer isentropic recompression can be assumed. In the inner layer, however, 
the effect of the pressure gradient is countered by the shear gradient. Following 
from this, the velocity profile a t  the re-attachment point is specified in terms of 
the velocity ratio on the dividing streamline and the pressure gradient at re- 
attachment. A fairly simple approximate value of the re-attachment pressure 
gradient is suggested (see figure 5 )  and the profile thickness parameters and pres- 
sure rise at  this point evaluated and presented graphically as a function of the 
velocity ratio on the dividing streamline. The problem now becomes one of finding 
the velocity ratio on the dividing streamline, and this is in part an iterative 
procedure. Conservation of cavity mass flow at the start of the pressure rise 
specifies the mass flow to be returned to the cavity. Downstream of the initial 
pressure rise and up to the re-attachment point the profile is assumed to continue 
to develop as a free shear layer. The velocity ratio on the dividing streamline is 
then obtained by locating the point in the shear layer at re-attachment which 
could reverse this required mass flow. The iteration occurs when it is remembered 
that the estimate of the length up to the re-attachment point requires a know- 
ledge of the ordinate of the dividing streamline. To start the iteration the length 
up to the start of the pressure rise can be used. 

Analysis 
In  general the difference between the overall corner-turning angle, ,&, and the 
flow-deflexion angle in the constant pressure region p3 is not very great. Conse- 
quently the length over which re-attachment takes place is quite large and of the 
order of the length over which the shear layer develops. The problem therefore 
requires a knowledge of the effect of the wall shear stress, boundary-layer growth 
and pressure rise during the process of re-attachment. A sophisticated solution 
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to this problem, is, of course, out of the question at the moment. In  order to 
proceed, the boundary layer is divided into an inner and outer layer after the 
fashion of Stratford (1959) and later improved by Townsend (1960, 1962). 

In  the outer layer the pressure rise is considered to be sufficiently abrupt as 
to make the shear stress contribution to the change in velocity a relatively minor 
one. In  the inner layer the situation is completely reversed and here the pressure 
forces must be balanced by the gradient of the shear stress when the velocity 
approaches zero. The analysis of this section is developed entirely for incompres- 
sible flow on the assumption that to obtain the appropriate compressible result 
the transformation of Mager (1959) can be used. It follows from this that the 
symbols should all have a bar and asterisk superimposed, but for clarity of pre- 
sentation this has been omitted save when the final results are presented in graphi- 
cal form. 

The x-equation of motion of an incompressible turbulent boundary layer can 
be writtenas 

along a streamline of the mean flow. With an abrupt pressure rise the major 
effect on the outer-layer velocity profile sterns from the ap/ax term and in fact 
Townsend (1960, 1962) ignored the &/ay contribution altogether in this outer 
region. Stratford (1959), however, introduced the concept of a ‘comparison 
boundary layer’ to estimate the effect of these Reynolds stresses in the outer 
region. Effectively this is equivalent to assuming that the Reynolds stresses 
along a given streamline in the outer layer remain constant at their initial 
value during the pressure rise. According to this suggestion, along a streamline 
in the outer layer (in incompressible flow) 

(31) 
where p4 and p 3  are the static pressures (assumed constant in the y-direction) 
at  the re-attachment point and the start of the pressure rise respectively. The 
prime denotes the comparison profile, the profile which would be developed if 
the pressure had remained constant between these two stations. This relationship 
gives the velocity profile in the outer layer and obviously can very readily be 
extended to the compressible case without the aid of the transformation. This 
is, in fact, what McDonald (1964) has done. 

Considering now the inner layer, Stratford (1959) showed that, for y small 
and +pu2 M 0, integration of (48) gives 

(*PU2)4 = (4P-pu’2)3- 0 4 -  PA, 

T = Td + y(dp/dx). (32) 

Using either dimensional analysis or mixing-length theory Stratford was able 
to show that when rd was zero (at re-attachment or separation) the velocity 
profile in the inner layer has the form 

(33) 

where KO is an absolute constant (subsequently taken as 0.40). Equations (31) 
and (33) give the velocity profile at re-attachment and it remains to join the two 

2 dP *w2 = p & Y ,  
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solutions. Townsend pointed out that the join is specified by continuity of velo- 
city, shear stress and mass flux. Continuity of velocity requires 

where the subscript ‘j ’ denotes the joining streamline. 

from the concept of eddy kinematic viscosity, E ,  independent of y there results 
On the assumption that the shear stress in the outer region can be determined 

Ti = 7; = = y j 2 .  
Continuity of mass flux gives 

(35) 

Evidently if the velocity and shear stress distribution of the comparison profile 
are known then (34), (35) and (36) give a zero wall stress condition as a function 
of G, and dC,/dx where C, = (p4 - ~ ~ ) / & p u ; ~ .  In  the case of a separating boundary 
layer the potential flow pressure distribution can, in most cases, be used so that 
these three equations may be solved to predict the location of the separation 
point. However, in the case of a re-attaching boundary layer the potential flow 
(if it  can be called such) is too closely linked to the viscous problem to be of much 
help. For example, before the potential flow solution can be made to bear 
any resemblance to the actual flow, the geometry of the separated flow region, 
itself a function of the base pressure, must be known (Nash 1964). Hence if any 
progress is to be made some assumption must be made regarding the pressure 
gradient at re-attachment. Having done this the three equations could then be 
solved for the pressure at the re-attachment point. This is done in rather a crude 
fashion as follows: fromfigure 5 it  can be seen that, based on the earlier-mentioned 
hypothesis concerning the start of the pressure rise ( 3  5 (c)), the length over which 
re-attachment takes place is given by 

sx = 2(PT-P)- ly{? 
where Yi  = (Yd-Y$$=0)z=13, 

and similarly sc, = c,. 
Thus the pressure gradient is given approximately by 
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and from these equations the pressure rise to re-attachment and the velocity 
profile at re-attachment may be determined. It is noted that this set of equations 
would have to be solved for each particular geometry involved, so obviously 
further simplification is desirable. This is achieved by noting that, to the same 
degree of approximation as was adopted in estimating the pressure gradient, 

Yi = Y: (-1'4 

and p T - p  = const. = 0.25. (45) 

The first approximation may be justified by noting that as the inner edge of the 
comparison boundary layer grows so the ordinate of the dividing streamline 

Outer edge of 
the mixing 

Dividing 
streamline .,, 

Stcric 
pressure j 

FIGURE 5. Sketch of the re-attachment region. 

decreases, a move dictated by the requirement to return a fixed mass flow upon 
re-attachment. The second of these approximations is known to be quite accurate, 
especially when ,8 is small (Love 1957). In  order to obtain a generalized solution 
it is now only necessary to adopt a velocity profile and put values to numerical 
constants. In  view of the difficulty involved in using the error-function profile 
introduced earlier, the easily integrated and very similar sine profile was 
adopted, that is 

together with, of course, Kirk's approximation. Taking KO = 0.40, (T* = 12 
and q+o = - 1.0, C, was calculated as a function of $2 by an iterative process. 
This is plotted in figure 6 and here a direct comparison can be made between the 
two-layer model adopted here and the one-layer model used previously. In the 

Q = &(l+sinq*), (46) 
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latter case C, is simply equal to g5hz under the assumption of isentropic recom- 
pression of the dividing streamline. It is apparent from figure 6 that, in view of 
the cross-over obtained on comparing these two approaches, some error of 
cancellation must have been present in the one-layer model and probably arose 
because the loss in total head due to Reynolds stress is balanced by the increase 
in pressure rise possible because of the profile at  the wall distorting to give zero 
wall shear stress. This result probably explains the success of methods such as 
those used by McDonald ( 1964), where isentropic recompression has been 
assumed. The analysis is now continued to enable the various thickness para- 
meters of the profile at the re-attachment point to be determined. 

0.1 

0.3 

0 0.6 

FIGURE 6. The pressure rise to re-attach the shear layer as a function of the velocity 
ratio on the dividing streamline. - , Two-layer theory; - -- , one-layer theory. 
McDonald (1964) (C, = q52). 

From continuity considerations the boundary-layer thickness at  re-attach- 

From the definition of displacement thickness and the known profile at  re- 
attachment the boundary-layer displacement thickness at the re-attachment 
point, A,, is given by 

and similarly the momentum thickness at re-attachment 8, is given by 
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These expressions have been evaluated using the sine profile and are given 
graphically in figures 7,s and 9. In Appendix 1 the appropriate transformation 
relationships are given so that the foregoing analysis can be used to predict 
the change in compressible boundary-layer parameters. In  order to complete 
this estimate of the boundary layer a t  re-attachment it remains to determine 
$2, the velocity ratio of the dividing streamline of the comparison profile. This 
is done in the subsequent section. 

2 

I 

Kt 
FIGURE 7. The boundary-layer thickness a t  the re-attachment point. 8; $2, transformed 
profile thickness above the dividing streamline at the start of the pressure rise and at the 
re-attachment point, respectively. 

0.20 

5 0.10 
&* 

0.1 0.2 0.3 0.4 0.5 ( 

4; 
5 

FIGURE 8. The boundary-layer momentum thickness at the re-attachment point. 
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! 0.3 0 

4; 
FIGURE 9. The boundary-layer shape parameter at re-attachment. 

The conzparison profile 

The velocity ratio on the dividing streamline of the comparison profile is obtained 
by remembering that the mass flow to  be returned to the cavity is given by 

where L* = l { l + & ( ~ - l ) M ~ ~ } - ~ + 3 0 8 $ .  

This mass flow is equated to the mass flow in the shear layer below 7: at length 1 
from separation, that is 

which gives 

Using a value of # dy * of 0.3989, obtained from Korst et al. (1  955) this equation 

can be solved to give y:, and so #A is obtained once the length 1 is determined. 
Since it has been demonstrated earlier in 9 5 ( c )  that 1 is in fact determined by 
a;, an iterative process is indicated here. 

1: 

32 Fluid Mech. 22 
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7. The re-adjustment region 
In  this section the flow downstream of re-attachment and up to the end of the 

pressure rise is considered. It is pointed out that the treatment of this part of the 
flow development given by McDonald (1964) can be expected to hold in the 
present circumstances. For this reason the method of McDonald, which in essence 
is based on the Squire &Young formula (1937),is utilized to predict the boundary- 
layer condition at the end of the pressure rise specified by the corner. This is 
compared with the corresponding flat-plate profile shape parameter and the 
separation point moved either upstream or downstream depending on whether 
the estimated shape parameter is less than or greater than the corresponding 
flat-plate value. 

Analysis 

McDonald (1964) has shown that the boundary layer downstream of re-attach- 
ment should be estimated using a method based on the semi-empirical formula 
of Squire & Young (1937). However, as this formula represents a wake recom- 
pression law, the calculation required the wall shear stress to be negligible during 
the recompression process. I n  the cases to which this was applied there was little 
doubt that this condition was satisfied. This, however, may no longer be true 
as in the present analysis the length over which the layer readjusts is quite large. 
I n  Appendix 2 this point is considered in some detail and it is shown that even in 
the present instance it is still a reasonable assumption to neglect the effect of 
the wall shear stress on the thickness parameters. 

In  view of this the solution to this aspect of the problem given by McDonald 
(1964) is utilized. This gives the appropriate changes as 

IllesliMe4 = f(RWm-), (52 )  

(53) 

wheref(a*) is defined by (a), g* by (A 1.3), i& is given by 

c, = 1 - ( J 4 4 / J 4 3 ) 2 7  

and Me5 given by the overall corner-turning angle and the isentropic flow tables. 
The change in momentum thickness is obtained from 

- 
@/@ = g(&7/(d&-)> (54) 

where g@*) is defined by (6). 
Thus using equations ( 5 2 )  and (54) an approximate evaluation of the boundary- 

layer thickness parameters at the end of the pressure rise can be made. Following 
McDonald (1964) the hypothesis is advanced that this final profile must be of 
the flat-plate type and as such can be specified by the shape parameter given by 

(55) 
which is Maskell’s curve fit (1951) to theexperimental flat-plate data of Ludwieg 
& Tillman (1950) transformed to compressible flow using Mager (1959). In  the 
above the Reynolds number transformation is given by 

B* = 1.754- 0.14910g1,2$ + 0 ~ 0 1 0 1 5 [ l 0 g ~ , ~ ~ ~ ] ~ ,  

E;, = (1 + &(y-  i ) n 1 3 - @ 7 6 ~ ~ .  (56) 
Using the above an iteration is thus set up for the separation point. 
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8. A summary of the development 
In  view of the length of the calculation it is thought worthwhile to detail the 

development as a series of steps. Given the overall corner angle p,, the initial 
Mach number N,,, and the boundary-layer momentum thickness upstream of 
the corner, 01, a separation location, l,, is chosen and the procedure is as follows: 

(i) From (7) estimate p ,  and hence $4, and p2, following with an iteration 
using (9) to obtain p,) Me8 and p,. 

(ii) Using (3)-(6) (or figure 2) obtain 8, ( N 8,). 
(iii) From (25) find Prei, from (29) find p and so from (26) locate I,. 
(iv) With I = 1, solve (51) to give a first approximation to 72. Return to (28) 

and so estimate /3 and F, using (21) or (22) and Korst et al. (1955). These are used 
in (26) to obtain a second approximation to 1. Using this value, (51) gives a 
second approximation to 72, which from (1 1) gives #;. Probably only one itera- 
tion will be required. 

(v) From figures 6-9 the values of C,, 3: /3:, B:/@ and @ are obtained. From 
C,, &!4 is obtained via (53). 

(vi) From either shock-wave tables or tables of isentropic flow$!, is calculated. 
Thus using (52) and (a),.@- is calculated. Using (54) and (6) B,* is then estimated. 

(vii) Using (55) and (56) ,  H* flat plate is calculated and compared with 
Bz. If H$ is larger thanR* flat plate the separation point is moved downstream 
and vice versa if Hz is smaller than H* flat plate. 

9. A comparison with experiment 
To check the accuracy of the foregoing analysis the inviscid shock configura- 

tion existing at a corner was adopted and the final shape parameter calculated. 
This was done for pressure distributions given by Chapman et al. (1959) where 
the free-stream Mach number was 2.7. The results are given in figure 10, where it 
can immediately be seen that the calculated value of the final shape parameter 
agrees quite closely with the corresponding flat-plate value. As a test of the 
suitability of this procedure for the calculation of the shock configuration the 
separation point in one case was moved upstream and the length 1, doubled. 
This resulted in about a 50 yo increase in the value of the calculated final shape 
parameter so on this basis it is thought that the proposed method would be 
sufficiently sensitive . 

Further to this calculation the shape parameter was evaluated by the 
method of McDonald (1964) for the pressure distributions of Chapman et al. 
(1959) and i t  can be seen from figure 10 that, doubtless by a process of error 
cancellation, not much difference exists between the two calculations. 

Recently a detailed experimental investigation of this type of corner flow 
has been reported by White (1963). Unfortunately in this case the upstream 
boundary layer was forced to separate from a circular cylinder so the pressure 
rise to a separation and the plateau pressure ratio could not be estimated using 
the relationships given in this note. However, it  is felt that these relationships 
have been adequately verified elsewhere. In  order to use these results as a test of 
the present method the experimental separation point was adopted and the 

32-3 



500 H .  McDonald 

pressure rise across the second shock calculated. In  figure 11 this is shown to be 
in fairly good agreement with the measured pressure rise. To relate this agree- 
ment in pressures to the scale of the interaction it should be noted that 0.1 in 
pressure ratio would alter the shear layer length by about 25 yo. 

A rather interesting confirmation of the present two-layer analysis is to be 
found in the experimental work of Nash et a,l. (1963) and in the work of White 
(1963). In these references the re-attachment conditions of a compressible shear 

I 
! 

J I 

M5 

FIGURE 11. A compftrison between measured and estimated plateau pressures. 
+, Experiments of White (1963). - , Estimate of present note. 
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FIGURE 13. A comparison between measured and predicted pressure rise required to 
re-attach the shear layer. 0, Nash (1963); x , White (1963), measured re-attachment 
pressure rise coefficient. ___ , Calculated value from present analysis. 

I I I 
1 

0 0.02 0.04 0.00 0 OR 0.10 

W J L  

I I I 
1 

0 0.02 0.04 0.00 0 OR 0.10 

W J L  
FIGURE 13. X comparison between measured and predicted base pressure a t  A1 = 1.5. 
Experiments of: A, Beastall & Eggink (1951); 0, Hastings (1963); x , Sirieux (1960); 
A ,  Gaddetal. (1955); -.- , Chapman et al. (1952) ; 0, Wimbrow (1954) ; + , Morrow &Katz 
(1955); El, Goin (1953); 8, Saltzman (1961). ~ , Present note, -Rot = lo4; - - - -, 
methodofMcDonald (1964), H? = 1.4. 
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layer were measured and expressed in terms of a recompression parameter N ,  
given by 

where 

From the quoted base pressures and the measured N values it is a simple matter 
to compute Cp, that is, 1 - (Me4/Me3)2. Using the experimental lengths of shear- 
layer development (a necessity in this case since the results of Nash 1963 are 
subsonic) together with the measured initial boundary layer an estimate of 
the velocity ratio on the dividing streamline was made. From figure 6 a theor- 
etical value of Cp was then obtained and this is compared with the measured 
values in figure 12, and it is evident from this that a fair degree of agreement has 
been obtained. Finally it is worth noting that the present two-layer analysis can 
be used to extend the range of initial boundary-layer thickness for which the 
analysis of McDonald (1964) is valid. The method of doing this is simply to 
follow McDonald’s analysis as outlined until it  is desired to calculate the profile 
at  re-attachment. This part is analysed according to the present note and the 
subsequent development calculated according to McDonald. In  figure 13 the 
results of some base pressure calculations according to this method are compared 
both with experiment and the method of McDonald (1964). It can be seen that a 
considerable degree of agreement with experiment has been obtained. 

10. Conclusions 
It would appear that the base pressure analysis given by McDonald (1964) 

is capable of being developed and that a fairly accurate estimate of the inviscid 
shock position occurring at a large-angle compression corner can be made. 
In obtaining this solution, however, we have introduced many additional 
assumptions whose validity must be tested by further more detailed experiments. 
These additional assumptions are now summarized: 

1. The effect of the pressure rise from the separation point to the plateau 
pressure has a negligible effect on the boundary-layer momentum thickness. 

2 .  The velocity profile at the start of the plateau region is adequately de- 
scribed by Kirk’s approximation (1959). 

3. The pressure gradient at re-attachment is given approximately by the 
relationship suggested, and is sufficiently large for a two-layer model of re- 
attachment to be realistic. 

4. The effect of the Reynolds stresses in the outer part of the re-attaching 
shear layer can be assumed to remain constant at the free shear-layer value. 

5.  The effect of the wall shear stress during the process of readjustment is 
negligible. 

The work reported in this note was performed in part fulfilment of Ministry 
of Aviation Contract No. KU/4/025/CB 53 (a) and the author is indebted to the 
Ministry for permission to publish. 
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Appendix 1. Some relationships under the Mager transformation 

the following relationships hold 
It can fairly readily be shown that using the transformation of Mager (1959) 

6 = {I++(?- l)M:)36*+&(y- l)M:{l+*(y-- l)H,2)3(8*+b*:), (A1.1) 

B = { i+h(y -1 )~ : )3~* ,  (A 1.2) 

H = (1 + &(y - 1)  M,")R* + +(y - 1) M,2, (A 1.3) 

A = (1 + &(y - 1)  M34 A* + +(y - 1) ,$I,"{ 1 + t(7 - 1) (A 1.4) 8*. 
Hence, after some manipulation, 

A - (1 + +(y - 1)  ME) d*/8* + h(y - 1)  M," B*/F* 
s 
- - _ _ _ _ _ ~ ~  -. 

1 + $(y - 1) M2, (8*/6* + 6*/6*) 

(A 1.5) 

(A 1.6) 

Appendix 2. The wall shear stress contribution to the change in 
boundary-layer thickness parameters downstream of the re-attachment 
point 

Tetervin & Lin (1951) give the momentum integral equation and the moment- 
of-momentum equation of an incompressible boundary layer as 

(A 2.1) 

(A 2.2) 
neglecting the normal stress and pressure variation terms. 

Equations (A 2.1) and (A 2.2) provide two relationships between five un- 
knowns, the momentum thickness 0, the shape parameter H ,  the free-stream 
velocity distribution u,, the wall shear stress 7, and the shear distribution across 
the layer T. Following standard boundary-layer practice some relationship 
between 8, H and 7,, could be adopted such as the Ludwieg-Tillmann (1950) 
relationship. Another relationship is readily supplied by linear supersonic-flow 
theory, which relates the growth of the displacement thickness to the change in 
pressure (this statement implies that equations (A 2.1) and (A 2.2) are the trans- 
formed equations of some supersonic interaction). Finally to completely deter- 
mine the solution it only remains to relate the local shear-stress distribution to 
19, H and 7,. Leaving aside that problem for the moment, Reshotko & Tucker 
(1957) have integrated (4 2.2) to give 

f(H)/f(&) = (qJ%4) e-t(s), (A 2.3) 

where (A 2.4) 

andf(H) is defined by (4). It is worth noting that the result used earlier from 
Reshotko & Tucker (1955) to determine the condition of the boundary layer at  
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separation; that is equations (3) to (6) are obtained from (A 2.3) and (A 3.1) on 
assumption that f ( x )  and 7 ,  are negligible. In  the present case of flow re-attach- 
ment, however, [(x) cannot be negligible, for it is this term which opposes 
the pressure-gradient effect on the shape parameter and permits the flow to 
re-attach. (In McDonald 1964) an estimate of [(x) was obtained using the 
semi-empirical wake recompression of law of Squire & Young.) It remains to 
show that the effect of the wall shear stress on the thickness calculation is 
negligible even when the re-attachment length is not small, thus enabling the 
method of McDonald (1964) to be used in this case. 

This is done by returning to the concept of an inner and outer layer and noting 
that in the outer layer the boundary layer will not be greatly affected by the 
wall. Thus the change in the integral of local shear accross the boundary layer 
will be restricted mainly to the region close to the wall. Supposing this inner 
layer to extend out to half the boundary-layer thickness allows a rough estimate 
of about 4 G'' to be made for the maximum value of the difference in shear integral 
between wall and wake re-attachment. In  this fashion the difference in [(x) can 
be expressed in the form 

(A 2.5)  

and it is a straightforward matter to demonstrate that this integral is of order 
for the very long re-attachment lengths of Mueller & Robertson (1963) 

and McCullough & Gault (1949). Since [(x) must be of order unity (McDonald 
1964) the difference between wall and wake recompression is therefore shown to 
be very small in so far as the shape parameter H is concerned. 

In  a similar fashion it is not difficult to show that integrating the momentum 
equation with and without the wall shear stress yields very similar results for 
the experiments of Mueller & Robertson (1963) and from this it would seem 
that in the present circumstances it is permissible to neglect the wall shear stress 
contribution to the change in boundary-layer thickness parameters, and so use 
the method of McDonald (1963). 


